NATURAL CONVECTION

E. V. Kudryavtsev and N. E. Cherepkova

UDC 536.253

The cube-root law and the limiting square-root law of heat transfer during natural convection with developed turbulence are derived analytically.

Heat transfer during natural convection is, as we well know, characterized by self-adjointness with respect to the governing dimension and is described by the cube-root law. This law has been established experimentally in [1], with the value of $\operatorname{GrPr} \sim 10^{13}$ attained on the basis of the governing dimension (diameter of a sphere) equal to 16 m , and it would be interesting to also derive it analytically.

We will consider the heat transfer during natural convection at a flat vertical plate, with the convective stream sufficiently turbulent. The equation of the steady-state (average) shear stress profile across the boundary layer is

$$
\begin{equation*}
\frac{\partial \tau_{y}}{\partial y}=-\rho\left(\bar{W}_{x} \frac{\partial \bar{W}_{x}}{\partial x}+\bar{W}_{y} \frac{\partial \bar{W}_{y}}{\partial y}\right)+g \rho \beta\left(T-T_{c}\right) \tag{1}
\end{equation*}
$$

where the terms on the right-hand side represent the inertia forces and the convection (lift) force respectively.

The variation of the turbulent thermal flux across the boundary layer is expressed by the equation

$$
\begin{equation*}
\frac{\partial q_{y}}{\partial y}+c_{p} \rho\left(\bar{W}_{x} \frac{\partial T}{\partial x}+\bar{W}_{y} \frac{\partial T}{\partial y}\right)=0 \tag{2}
\end{equation*}
$$

We now define τ_{y} and q_{y} in terms of the following functions

$$
\begin{align*}
\tau_{y} & =\tau_{0}(1-u) f(u)=\tau_{0}(1-u)\left(a_{0}+a_{1} u+a_{2} u^{2}\right) \tag{3}\\
q_{y} & =q_{0}(1-u) F(u)=q_{0}(1-u)\left(b_{0}+b_{1} u+b_{2} u^{2}\right) \tag{4}
\end{align*}
$$

with τ_{0} and q_{0} denoting respectively the shear friction and the thermal flux at the surface.
Analogous functions for forced convection were introduced by G. S. Moroz and by Pohlhausen [2].
We next assume that the thermal flux decreases along the normal coordinate exponentially. For this, we represent the dimensionless argument of the thermal flux function in exponential form, letting

$$
\begin{equation*}
u=1-\exp \left(-x \frac{y}{\delta}\right) \tag{5}
\end{equation*}
$$

where x is a constant and δ denotes that part of the boundary-layer thickness which corresponds to a positive velocity increment (gradient) normal to the surface. Then u will vary from 0 at the surface ($\mathrm{y}=0$) to 1 $(y=\infty)$, i. e., the selected function is convenient in that its integration limits are from 0 to ∞. According to the Reynolds analogy, the same assumption will be made for the shear stress profile.

The number of terms in the expansion depends on the boundary conditions:

1. When $\tau=\tau_{0}$ at $y=0$ and $u=0$, then (3) and (1) yield $a_{0}=1$
2. When $\tau=\tau_{0}$ at $y=0$ and $u=0$, then (1) and (5) yield

$$
\begin{equation*}
a_{i}=1+\frac{g \rho \beta \delta\left(T_{s}-T_{a}\right)}{x \tau_{0}}=1+A_{s} \tag{6}
\end{equation*}
$$

. When $\tau=\tau_{0}$ at y andu 0, then (1) and ((1)

Textile Institute, Moscow. Translated fron Inzhenerno-Fizicheskii Zhurnal, Vol. 24, No. 2, pp. 211-219, February, 1973. Original article submitted September 23, 1971.
© 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $\$ 15.00$.
3) When $\tau_{y}=0$ at $y=\delta$ and $u=u_{0}=1-\exp (-x)$ then (3) yields for the second coefficient

$$
\begin{equation*}
a_{2}=-\frac{1-a_{1} u_{0}}{u_{0}^{2}} . \tag{9}
\end{equation*}
$$

In order to determine the polynomial coefficients in (4), we proceed as before:

1. When $q=q_{0}$ at $y=0$ and $u=0$, then (4) $b_{0}=1$;
2. When $q=q_{0}$ at $y=0$ and $u=0$, then (2), (5), and (4) yield $b_{1}=1$;
3) When $\left(\partial^{2} q_{y} / \partial u^{2}\right)_{y=0}=0$ at $y=0$ and $u=0$, then $b_{2}=1$.

The first integral expression in the variable u, for the thermal flux normal to the wall, is

$$
\begin{equation*}
q_{0}=\frac{\partial}{\partial x} \int_{0}^{1} c_{p} \rho \bar{W}_{x}\left(T_{y}-T_{a}\right) \frac{d u}{1-u} \frac{\delta}{x} \tag{13}
\end{equation*}
$$

or in terms of the Nusselt number, after both sides of Eq. (13) have been multiplied by l / λ and with x / l $=\xi, \delta / \chi=\delta^{*}, a=\lambda / \mathbf{c}_{\mathrm{p}} \rho$,

$$
\begin{equation*}
\Psi=\frac{d}{d \xi}\left[\frac{\delta^{*}}{a} \int_{0}^{\frac{1}{W}} \bar{W}_{x}\left(T_{y}-T_{a}\right) \frac{d u}{1-u}\right] \tag{14}
\end{equation*}
$$

Expression (14) is very important: it is essentially the Nusselt relation.
The second integral expression can be obtained from the relation between stress T and the tempera ture; in terms of variable u we have

$$
\begin{equation*}
\tau_{0}=g \rho \beta \int_{01}^{1}\left(T_{y}-T_{a}\right) \frac{\delta}{x} \frac{d u}{1-u}-\int_{0}^{1} \rho \frac{\partial \bar{W}_{x}^{2}}{\partial x} \frac{\delta}{x} \frac{d u}{1-u} \tag{15}
\end{equation*}
$$

In order to determine the temperature profile across the boundary layer, we use the relation

$$
\begin{equation*}
q_{y}=-\bar{\lambda}_{\mathrm{T}} \frac{\partial T}{\partial y} \tag{16}
\end{equation*}
$$

and find the relation between ($\mathrm{T}_{\mathrm{y}}-\mathrm{T}_{a}$) and $\mathrm{T}_{\mathrm{S}}-\mathrm{T}_{a}$):

$$
\begin{equation*}
\left(T_{y}-T_{a}\right)=\left(T_{s}-T_{a}\right) \frac{a \delta}{x} \int_{u}^{1} \frac{F(u)}{\bar{\lambda}_{\mathrm{T}}} d u \tag{17}
\end{equation*}
$$

Inserting for ($\mathrm{T}_{\mathrm{y}}-\mathrm{T}_{a}$) expression (17) into (15), with

$$
T_{s}-T_{a}=\frac{q_{0} \delta}{\chi} \int_{0}^{1} \frac{F(u)}{\bar{\lambda}_{\mathrm{T}}} d u
$$

we obtain

$$
\begin{equation*}
\Psi=\frac{q_{0} l}{\lambda}=\frac{l x\left(T_{s}-T_{a}\right)}{\lambda \delta \int_{0}^{1} \frac{F(u)}{\bar{\lambda}_{\mathrm{T}}} d u} \tag{18}
\end{equation*}
$$

It follows from the Prandtl-Karman theory that the velocity profile across the boundary layer is most closely described by a "logarithmic" law, but this would be mathematically very difficult to apply in the analysis here and, therefore, we used instead the Karman power-law relation

$$
\begin{equation*}
\bar{W}_{x}=B_{p} \sqrt{\frac{\tau_{0}}{\rho}}\left(\sqrt{\frac{\tau_{0}}{\rho}} \frac{y}{v}\right)^{p} \tag{19}
\end{equation*}
$$

where B_{p} and p are constant numbers.
For the turbulent viscosity as a function of y we have

$$
\begin{equation*}
\bar{\mu}_{\mathrm{T}}=\rho \frac{\sqrt{\frac{\boldsymbol{\tau}_{0}}{\rho}}}{p B_{p}}\left(\sqrt{\frac{\tau_{0}}{\rho}} \frac{\delta}{v}\right)^{-p} \delta \eta^{1-p} \tag{20}
\end{equation*}
$$

with $\eta=\mathrm{y} / \delta$ 。

Assuming, in accordance with (5) that $u \approx \mu(y / \delta)$ for small values of u (inasmuch as only a small part of the boundary layer directly adjacent to the wall surface plays an important role in the heat transfer), we have $\eta=u / x$ and, letting $\delta * / x=\delta *$, we obtain

$$
\begin{equation*}
\bar{\mu}_{\mathrm{T}}=\rho \frac{\sqrt{\frac{\tau_{0}}{\rho}}}{p B_{p}}\left(\sqrt{\frac{\tau_{0}}{\rho}} \frac{\delta^{*}}{v}\right)^{-p} \delta^{*} u^{1-p}=\bar{\mu}_{0} u^{1-p} \tag{21}
\end{equation*}
$$

For the kinematic viscosity we assume a similar relation:

$$
\begin{equation*}
\bar{v}_{\mathrm{T}}=\bar{v}_{0} u^{1-\rho} . \tag{22}
\end{equation*}
$$

Here, according to (21),

$$
\begin{equation*}
\bar{v}_{0}=\frac{\vec{\mu}_{0}}{\rho}=\frac{v}{p B_{p}}\left(\sqrt{\frac{\tau_{0}}{\rho}} \frac{\delta^{*}}{v}\right)^{1-p} \tag{23}
\end{equation*}
$$

In the turbulent mode the thermal conductivity is related to the dynamic viscosity as follows:

$$
\begin{equation*}
\bar{\lambda}_{\mathrm{T}}=c_{p} \bar{\mu}_{\mathrm{T}} . \tag{24}
\end{equation*}
$$

With (21) we obtain now

$$
\begin{equation*}
\bar{\lambda}_{\mathrm{T}}=\frac{\rho c_{p} v}{p B_{p}}\left(\sqrt{\frac{\tau_{0}}{\rho}} \frac{\delta^{*}}{v}\right)^{1-p} u^{1-p} \tag{25}
\end{equation*}
$$

or, with (23),

$$
\begin{equation*}
\frac{\bar{\lambda}_{0}}{\lambda}=\operatorname{Pr} \frac{\bar{v}_{0}}{v}=\operatorname{Pr} \omega \tag{26}
\end{equation*}
$$

Now, in terms of (26), formula (17) becomes

$$
\begin{equation*}
T_{y}-T_{a}=\left(T_{s}-T_{a}\right) \frac{\mathrm{Nu}^{*}}{\omega \operatorname{Pr}} \int_{0}^{1} F(u) u^{\rho-1} d u, \tag{27}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathrm{Nu}^{*}=\frac{\alpha \delta^{*}}{\lambda} \tag{28}
\end{equation*}
$$

A transformation of the integral in (2), with $\mathrm{T}_{\mathrm{y}}=\mathrm{T}_{\mathrm{S}}$ at $\mathrm{u}=0$, yields

$$
\begin{equation*}
N u^{*}=p \omega \operatorname{Pr} \frac{1}{J_{0}(p)} \tag{29}
\end{equation*}
$$

Then

$$
\begin{equation*}
T_{v}-T_{a}=\frac{T_{s}-T_{a}}{J_{0}(p)}\left[\left(1-u^{p}\right)+\frac{p}{p+1}\left(1-u^{p+1}\right)+\frac{p}{p+2}\left(1-u^{p+2}\right)\right] \tag{30}
\end{equation*}
$$

(the temperature profile in Fig. 1 has been plotted according to Eq. (30) in ($\left.\mathrm{T}_{\mathrm{y}}-\mathrm{T}_{a}\right) /\left(\mathrm{T}_{\mathrm{S}}-\mathrm{T}_{a}\right), \mathrm{y} / \delta^{*}$ coordinates).

Now the velocity component \bar{W}_{X} will be expressed in terms of variable u and the other parameters.
According to the definition of shear friction

$$
\begin{equation*}
\tau_{y}=\bar{\mu}_{\mathrm{r}} \frac{\partial \bar{W}_{x}}{\partial y} \tag{31}
\end{equation*}
$$

but from (23) we have

$$
\begin{equation*}
\vec{\mu}_{\mathrm{T}}=\rho v \omega u^{1-p} \tag{32}
\end{equation*}
$$

or with the aid of (5)

$$
\begin{equation*}
\bar{W}_{x}=\frac{\tau_{0} \delta^{*}}{\rho v \omega} \int u^{p-1} f(u) d u+C \tag{33}
\end{equation*}
$$

*P. L. Kapitsa [4] has suggested the possibility that the quantity $\mathrm{W}_{\mathrm{y}}^{\prime} l^{\prime}$ increases continuously from the rigid wall surface on.

Fig. 1. Temperature and velocity profiles plotted according to formulas (30) and (34) respectively: (T_{y} $\left.-\mathrm{T}_{a}\right) /\left(\mathrm{T}_{\mathrm{s}}-\mathrm{T}_{a}\right)=\mathrm{f}\left(\mathrm{y} / \delta^{*}\right)$ (solid lines), $\mathrm{W}_{\mathrm{x}} / \mathrm{W}_{0}$ (dashed line) with $p=1 / 7(1,4), p=1 / 3(2,3)$.

For $\bar{W}_{\mathrm{x}}=0$ at $\mathrm{u}=0$ there follows $\mathrm{C}=0$.
As before, we transform the integral in (33)

$$
\begin{equation*}
\bar{W}_{x}=W_{0} \frac{u^{p}}{p}(1-u)\left(1-\frac{p}{p+2} a_{2} u\right) \tag{34}
\end{equation*}
$$

with $\mathrm{W}_{0}=\delta *_{0} / \rho \nu \omega$ (the velocity profile in Fig. 1 has been plotted according to Eq. (34) in $\bar{W}_{\mathrm{X}} / \mathrm{W}_{0}, \mathrm{y} / \delta^{*}$ coordinates).

Inserting now expression (34) for \bar{W}_{X} into (14) and using expression (3), we obtain

$$
\begin{equation*}
\Psi=\frac{d}{d \xi}\left[\frac{W_{0} \delta^{*}\left(T_{s}-T_{a}\right)}{p a J_{0}(p)} \int_{0}^{1} u^{p}\left(1-\frac{p}{p+2} a_{2} u\right) \Phi(u) d u\right] \tag{35}
\end{equation*}
$$

When $\mathrm{T}_{\mathrm{S}}-\mathrm{T}_{\boldsymbol{a}}=$ const., then $\mathbf{\Psi} / \mathrm{T}_{\mathbf{S}}-\mathrm{T}_{\boldsymbol{a}}=\mathrm{Nu}$ or from (35) and (34)

$$
\begin{equation*}
\mathrm{Nu}=\frac{d}{d \xi}\left[\frac{\left(\sqrt{\frac{\tau_{0}}{\rho}}\right)^{2}}{v^{2}} \operatorname{Pr} \frac{1}{\omega p} \frac{J_{3}(p)}{J_{0}(p)}\right] \tag{36}
\end{equation*}
$$

However,

$$
\begin{equation*}
\frac{\sqrt{\frac{\tau_{0}}{\rho}} \delta^{*}}{v}=\mathrm{Re}^{*} \tag{37}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega p=\frac{1}{B_{p}}\left(\mathrm{Re}^{*}\right)^{1-\rho} \tag{38}
\end{equation*}
$$

Then formula (36) becomes

$$
\begin{equation*}
\mathrm{Nu}=\frac{d}{d \xi}\left[\left(\operatorname{Re}^{*}\right)^{1+\rho} \operatorname{Pr} B_{p} \frac{J_{3}(p)}{J_{0}(p)}\right] \tag{39}
\end{equation*}
$$

We will further seek a relation between Re^{*} and Gr *. Rearranging Eq. (15) for τ_{0}, with relation (30) for $\mathrm{T}_{\mathrm{y}}-\mathrm{T}_{a}$ and relation (34) for $\overline{\mathrm{W}}_{\mathrm{X}}$, we obtain

$$
\begin{equation*}
\tau_{0}=g \rho \beta \delta^{*} \frac{T_{s}-T_{a}}{J_{0}(p)} J_{1}(p)-\rho \frac{\partial}{\partial x}\left[\delta^{*}\left(\frac{\tau_{0} \delta^{*}}{\rho v \omega p}\right)^{2} J_{2}(p)\right] . \tag{40}
\end{equation*}
$$

Inserting Re^{*} from (37) and (38) into (40), with $\mathrm{Gr} *=\mathrm{g} \beta \Delta \mathrm{T}_{\mathrm{S}} \delta^{* 3} / \nu^{2}$ and $\delta * / 1=\delta_{\mathrm{S}}$, yields

$$
\begin{equation*}
\mathrm{Re}^{*^{s}}=\mathrm{Gr}^{*} \frac{J_{1}(p)}{J_{\mathrm{D}}(p)}-\delta_{s} \frac{d}{d \xi}\left[\frac{B_{p}^{2}}{\delta_{s}} \mathrm{Re}^{*^{2(1+p)}} J_{2}(p)\right] \tag{41}
\end{equation*}
$$

We will now confine our analysis to the approximate solution, disregarding the second term in Eq. (14), and let

$$
\begin{equation*}
\mathrm{Gr}^{*}=\mathrm{Gr} \delta_{\mathrm{s}}^{3} \tag{42}
\end{equation*}
$$

which then yields

$$
\begin{equation*}
\mathrm{Re}^{*^{2}}=\mathrm{Gr} \frac{J_{1}(p)}{J_{0}(p)} \delta_{\mathrm{s}}^{3} \tag{43}
\end{equation*}
$$

We now try to relate the Nusselt number and the Grashof number. According to (29) and (38),

$$
\begin{equation*}
\mathrm{Nu}^{*}=\frac{1}{B_{p} J_{0}(p)} \mathrm{Re}^{*(1-p)} \mathrm{Pr}, \tag{44}
\end{equation*}
$$

but, since

$$
\begin{equation*}
\mathrm{Nu}^{*}=\frac{\alpha \delta^{*}}{\lambda}=\frac{\alpha l \delta_{s}}{\lambda}=\mathrm{Nu} \delta_{s} \tag{45}
\end{equation*}
$$

and, according to (43),

$$
\begin{equation*}
\delta_{s}=\operatorname{Re}^{\frac{2}{3}} \operatorname{Gr}^{\frac{1}{3}}\left[\frac{J_{0}(p)}{J_{\mathrm{i}}(p)}\right]^{\frac{1}{3}}, \tag{46}
\end{equation*}
$$

hence

$$
\begin{equation*}
\mathrm{Nu}=\frac{1}{B_{p} J_{0}(p) \delta_{s}} \mathrm{Re}^{*(1-p)} \operatorname{Pr}=\frac{\operatorname{Pr}}{B_{p} J_{0}(p)}\left[\frac{J_{1}(p)}{J_{0}(p)}\right]^{\frac{1}{3}} \mathrm{Gr}^{\frac{1}{3}} \mathrm{Re}^{\frac{1-3 p}{3}} . \tag{47}
\end{equation*}
$$

On the other hand, for the Nusselt number we have Eq. (39) and will use it for expressing Re* in terms of the Grashof number and the other parameters. Finally, (39) and (47) yield

$$
\begin{equation*}
\operatorname{Re}^{*(1-p)} \frac{1}{\delta^{*}}=\frac{d}{d \xi}\left[\mathrm{Re}^{*(1+p)} B_{p}^{2} J_{3}(p)\right] \tag{48}
\end{equation*}
$$

or, considering (46), the differential equation

$$
\begin{equation*}
\frac{d}{d \xi}\left[\mathrm{Re}^{*(1+p)}\right]=\frac{1}{B_{p}^{2} J_{3}(p)}\left[\frac{J_{1}(p)}{J_{\theta}(p)}\right]^{\frac{1}{3}} \operatorname{Gr}^{\frac{1}{3}} \mathrm{Re}^{\frac{1-3 p}{3}} \tag{49}
\end{equation*}
$$

Integrating (49) yields (with $\mathrm{Re}^{*(1+\mathrm{p})}=\mathrm{z}$ and inasmuch as Re $* \rightarrow 0$ and $\mathrm{C}=0$ when $\xi \rightarrow 0$)

$$
\begin{equation*}
\operatorname{Re}^{* \frac{2+6 p}{3}}=\frac{2+6 p}{3(1+p)} \frac{1}{B_{p}^{2} J_{3}(p)}\left[\frac{J_{1}(p)}{J_{0}(p)}\right]^{\frac{1}{3}} \operatorname{Gr}^{\frac{1}{3}} \xi=A_{p} \operatorname{Gr}^{\frac{1}{3}} \xi \tag{50}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{Re}^{*}=A_{p}^{\frac{3}{2+6 \bar{p}}} \mathrm{Gr}^{\frac{1}{2+6 \rho}} \mathrm{~g}^{2+6 \overline{2} p}, \tag{51}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{p}=\frac{2+6 p}{3(1+p) B_{p}^{2} J_{3}(p)}\left[\frac{J_{1}(p)}{J_{0}(p)}\right]^{\frac{1}{3}} \tag{52}
\end{equation*}
$$

Inserting Re* from (51) into (47) yields

$$
\begin{equation*}
\mathrm{Nu}=\bar{A}_{p} \operatorname{Pr} \mathrm{Gr}^{\frac{1+p}{2(1+3 p)}} \xi^{\frac{1-3 p}{2+6 p}}, \tag{53}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{A}_{p}=\frac{1}{B_{p} J_{0}(p)}\left[\frac{J_{1}(p)}{J_{0}(p)}\right]^{\frac{1}{3}} A_{p}^{\frac{1-3 p}{2+6 p}} \tag{54}
\end{equation*}
$$

An analysis of formula (53) leads to the following conclusions:

1. If the heat transfer coefficient is to be independent of the linear dimension, then the power exponent of ξ must be equated to zero, i.e., $1-3 \mathrm{p} / 2+6 \mathrm{p}=0$ and thus $\mathrm{p}=1 / 3$, but then (53) becomes

$$
\begin{equation*}
\mathrm{Nu}=\bar{A}_{p} \operatorname{Pr} \mathrm{Gr}^{\frac{1}{3}} \tag{55}
\end{equation*}
$$

Obviously, this formula corresponds to the law of "self-adjointness" with respect to the dimension. In
other words, developed thermal turbulence prevails when $p=1 / 3$ (while forced turbulence is, according to Karman, characterized by $p=1 / 7$).
2. In order to satisfy the limiting relation $N u=f\left(\mathrm{Gr}^{1 / 2}\right)$, one must let $1+\mathrm{p} / 2(1+3 \mathrm{p})=1 / 2$, i.e., $\mathrm{p}=0$ and, consequently, the power exponent of ξ becomes equal to $1 / 2$. The Nusselt number then becomes proportional to the square root of the linear dimension, which is in agreement with the gist of the Frank -Kamenetskii corollary [3], i.e.,

$$
\begin{equation*}
\mathrm{Nu}=\overline{A_{p}} \operatorname{Pr}^{\frac{1}{2}} \xi^{\frac{1}{2}} \tag{56}
\end{equation*}
$$

3. It is interesting that, with $\mathrm{p}=1$, formula (53) reduces to the laminar fourth-root law:

$$
\begin{equation*}
\mathrm{Nu}=\overline{A_{p}} \operatorname{Pr} \mathrm{Gr}^{\frac{1}{4}} \xi^{-\frac{1}{4}}, \tag{57}
\end{equation*}
$$

where the negative exponent of ξ represents the well known decrease in the heat transfer coefficient with increasing distance from the origin of convective flow.

A further analysis of formula (53) makes it feasible to consider the case of $\operatorname{Pr}=1$ only, to include the Prandtl number in the coefficient \bar{A}_{p}, with the latter regarded as a function of the Prandtl number $\bar{A}_{p}=f(\operatorname{Pr})$, and to calculate the values of this coefficient according to the formula

$$
\begin{equation*}
\bar{A}_{p}=\frac{1}{B_{p} J_{0}(p)}\left[\frac{J_{1}(p)}{J_{0}(p)}\right]^{\frac{1}{3}}\left\{\frac{2+6 p}{3(1+p)} \frac{1}{B_{p}^{2} J_{3}(p)}\left[\frac{J_{1}(p)}{J_{0}(p)}\right]^{\frac{1}{3}}\right\}^{\frac{1-3 p}{2+6 p}} \tag{58}
\end{equation*}
$$

For $p=1 / 3,1 / 7$, and $1 / 10$ we have respectively

$$
\begin{aligned}
& p=\frac{1}{3} ; J_{1}=1.674 ; J_{0}=1.392 ; J_{3}=0.131 ; a_{2}=-10.2 ; \\
& p=\frac{1}{7} ; J_{1}=1.658 ; J_{0}=1.190 ; J_{3}=0.106 ; a_{2}=-18.1 ; \\
& p=\frac{1}{10} ; J_{1}=1.524 ; J_{0}=1.138 ; J_{3}=0.065 ; a_{2}=-24.2 .
\end{aligned}
$$

For eliminating a_{2} we have used the formula

$$
\begin{equation*}
a_{2}=-\left\{1+\frac{p}{p+1}\left[1+\frac{J_{0}(p)}{J_{1}(p)}\right]\right] \frac{2+p}{p} . \tag{59}
\end{equation*}
$$

Since for an approximate determination of τ_{0} we have used Eq. (41) without the second term, hence from (7) we obtain

$$
\begin{equation*}
a_{1}=1+\frac{J_{0}(p)}{J_{1}(p)} \tag{60}
\end{equation*}
$$

Inserting into (58) the found values of $J_{1}(p), J_{0}(p)$, and $J_{3}(p)$ yields

$$
\begin{equation*}
\bar{A}_{p=\frac{1}{3}}=0.765 B_{p}^{-1} ; \bar{A}_{p=\frac{1}{7}}=1.452-\frac{7}{B_{p}} ; \bar{A}_{p=\frac{1}{10}}=1.95 B_{p}^{-\frac{20}{13}} . \tag{61}
\end{equation*}
$$

With $B_{p}=8.74$, to the first approximation according to Karman, we obtain

$$
\begin{equation*}
\bar{A}_{p=\frac{1}{3}}=0.0876 \simeq 0.1 ; \bar{A}_{p=\frac{1}{7}}=0.697 ; \bar{A}_{p=\frac{1}{10}}=0.696 \tag{62}
\end{equation*}
$$

The first approximation $\bar{A}_{p=1 / 3}, \sim 0.10$ obtained on the basis of the coefficient B_{p} for forced convection is sufficiently close to the test value of $\bar{A}_{p=1 / 3}=0.13$ based on natural convection. This makes it feasible now, in turn, to determine B_{p} on the basis of the test value for B_{p} according to the cube-root law: $\mathrm{B}_{\mathrm{p}}=0.765$ $10.13=5.88$.

It is to be noted that these values indicate a close structural similarity between natural and forced turbulent flow.

NOTATION

x, y is the longitudinal and normal coordinate respectively;
τ_{y} is the tangential component of turbulent friction in a layer at a distance y from the plate surface;
$q_{y}=-\bar{\lambda}_{t}(\partial T / \partial y)$
T
T_{a}
$\mathrm{~T}_{\mathrm{S}}$
T_{y}
ρ
c_{p}
$\beta \bar{u}_{\mathrm{t}}$
$\bar{\lambda}_{\mathrm{t}}$
$\underline{\alpha} \bar{W}_{\mathrm{x}}, \bar{W}_{\mathrm{y}}$
is the turbulent thermal flux per unit area per unit time, normal to the surface, from a layer at a distance y from the plate surface; is the instantaneous temperature of the fluid; is the temperature of the fluid at infinity (far from the plate); is the temperature of the plate; is the temperature of a layer at a distance y from the plate surface; is the density of the fluid; is the specific heat of the fluid; is the thermal expansivity of the fluid; is the turbulent (average) dynamic viscosity; is the turbulent (average) thermal conductivity; is the coefficient of heat transfer during natural convection; are the longitudinal and normal component of turbulent (average) velocity;

$$
\begin{gathered}
f(u)=a_{0}+a_{1} u+a_{2} u^{2} ; F(u)=b_{0}+b_{1} u+b_{2} u^{2} ; \\
\Phi(u)=\left[\left(1-u^{p}\right)+\frac{p}{p+1}\left(1-u^{p+1}\right)+\frac{p}{p+2}\left(1-u^{p+2}\right)\right] ; J_{0}(p)=1+\frac{p}{p+1} \\
+\frac{p}{p+2} ; J_{1}(p)=\int_{0}^{1}\left[\left(1-u^{p}\right)+\frac{p}{p+1}\left(1-u^{p+1}\right)+\frac{p}{p+2}\left(1-u^{p+2}\right)\right] \frac{d u}{1-u} ; \\
J_{2}(p)=\int_{0}^{1} u^{2 p}(1-u)\left(1-\frac{p}{p+2} a_{2} u\right)^{2} d u ; J_{3}(p)=\int_{0}^{1} u^{p}\left(1-\frac{p}{p+2} a_{2} u\right) \Phi(u) d u . \\
\left.J_{1}(p)=\int_{0}^{1}\left[\left(1-u^{p}\right)+\frac{p}{p+1}\left(1-u^{p+1}\right)+\frac{p}{p+2}\left(1-u^{p+2}\right) \frac{d u}{1-u}\right]^{*}\right) .
\end{gathered}
$$

LITERATURE CITED

1. E. V. Kudryavtsev, Izv. Akad. Nauk SSSR OTN, No. 1 (1948).
2. Pohlhausen, Zeitschr. Angew. Mathem. u. Mechan. [Germany], 1 (1921).
3. Frank and D. A. Kamenetskii, Dokl. Akad. Nauk SSSR, 17, No. 1-2, (1937), 8, No. 7 (1938).
4. P. L. Kapitsa, Dokl. Akad. Nauk SSSR, 5, No. 7 (1947).
[^0]
[^0]: *The relation between this function and the $\Gamma(p)$-function makes it possible to use tables for calculations).

