
A N A L Y S I S  O F  T U R B U L E N T  H E A T  T R A N S F E R  D U R I N G  

N A T U R A L  C O N V E C T I O N  

E.  V. K u d r y a v t s e v  a n d  N. E ,  C h e r e p k o v a  UDC 536.253 

The cube- roo t  law and the limiting squa re - roo t  law of heat t r ans fe r  during natural  convection 
with developed turbulence are  derived analytically. 

Heat t r ans fe r  during natural  convection is, as we well know, charac te r i zed  by self-adjointness  with 
respec t  to the governing dimension and is descr ibed by the cube- root  law. This law has been establ ished 
exper imental ly  in [1], with the value of GrPr  ~ 1013 attained on the basis  of the governing dimension (dia- 
me te r  of a sphere) equal to 16 m, and it would be interest ing to also derive it analytically. 

We will consider  the heat t r ans fe r  during natural  convection at a fiat ver t ica l  plate, with the convec-  
tive s t r eam sufficiently turbulent. The equation of the s teady-sta te  (average) shear  s t r e s s  profile a c r o s s  
the boundary layer  is  

) 
, ~ / + g9[~ (T - -  Ta), (1) Oy , 

where the t e r m s  on the r ight-hand side r ep resen t  the iner t ia  fo rces  and the convection (lift) force r e s -  
pectively.  

The variat ion of the turbulent thermal  flux a c r o s s  the boundary layer  is expressed  by the equation 

Oq~ ~ ( ~ OT OT 
Oy-  -7 %0 k, -Ox + ~'u ~ , = O. (2) 

We now define r y  and qy in t e r m s  of the following functions 

T u = 7 o (1 - -  u) f (u) = Xo (1 - -  u) (a o + a lu  + aeu~'), (3) 

qu = qo (1 -- u) F (u) = q0 (1 - -  u) (b o q- blu -- b2u2), (4) 

with r 0 and q0 denoting respec t ive ly  the shear  fr ict ion and the thermal  flux at the surface.  

Analogous functions for  fo rced  convection were introduced by G. S. Moroz and by Pohlhausen [2]. 

We next assume that the thermal  flux dec reases  along the normal  coordinate exponentially. For  this, 
we r ep resen t  the dimensionless  argument  of the thermal  flux function in exponential form,  letting 

u = l - - e x p  - - •  , (5) 

where ~t is a constant  and 5 denotes that pa r t  of the boundary- layer  thickness which cor responds  to a positive 
veloci ty increment  (gradient) normal  to the surface.  Then u will va ry  f rom 0 at the surface (y = 0) to 1 
(y = ,o), i . e . ,  the selected function is convenient in that i ts  integrat ion l imits  are f rom 0 to ~o. According 
to the Reynolds analogy, the same assumption will be made for  the shear  s t r e ss  profile.  

The number  of t e rms  in the expansion depends on the boundary conditions: 

1. When r = T O at y = 0 and u = 0, then (3) and (1) y i e l d a  0 = 1 

2. When r = r 0 at y = 0 and u = 0, then (1) and (5) yield (6) 

a~ = 1 ,-I- gp[~8 (T,--  Ta) = 1 q- A,; (7) 
g'17 0 
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3) When 7"y = 0 at y = 5 and u = u 0 = 1--exp(--~)  then (3) yields for  the second coefficient (8) 

a z  = - -  I - -  a l u  o 
ug (9) 

In order  to determine the polynomial coefficients in (4), we proceed as before: 

1. When q = q0 at y = 0 and u = O, then (4) b 0 = 1; (10) 

2. Whenq = q 0 a t y =  Oandu = O, then (2), (5), and (4) y i e ldb  I =  1; (11) 

3) When (O2qy/3U2)y=o = 0 at y = 0 and u = 0, then b 2 = 1. (12) 

The f i rs t  integral  express ion  in the variable u, for  the thermal  flux normal  to the wall, is  
l 

0 ;cpp~(T~_To)  du 5 (13) 
q~ = -~-x 1 - - u  • 

0 

or  in t e r m s  of the Nusselt  number,  af ter  both sides of Eq. (13) have been multiplied by I / h  and with x / l  
= 4, ~ / n  = 5" ,  a = )~/Cpp, 

ture;  

1 ?I 

• 1 - - u  . Ox • l - - u  
oJ o 

In o rde r  to determine the tempera ture  profile a c r o s s  the boundary layer ,  we use the relat ion 

qu =--~T OT 

Oy 
and find the relat ion between (Ty--Ta) and Ts--Ta):  

| 

(T u - -  T~) = (T~--  T~) - ~5 ; -_F (u) du. 

u 

1 

0 

Express ion (14) is very  important:  it is  essent ia l ly  the Nussel t  relation. 

The second integral  express ion  can be obtained f rom the relat ion between s t r e s s  :T and the t e m p e r a -  
in t e rms  of variable u we have 

Inser t ing for  (Ty--Ta) express ion  (17) into (15), with 
1 

d., 
3 27 
0 

~F = q~ I• (T8 - -  Ta) 
L 1 

J 
0 

we obtain 

(15) 

(16) 

(17) 

(18) 

It follows f rom the P rand t l - -Karman  theory  that the veloci ty profi le a c r o s s  the boundary layer  is mos t  
c lose ly  descr ibed by a " logari thmic" law, but this would be mathemat ica l ly  ve ry  difficult to apply in the 
analysis  here and, therefore ,  we used instead the Karman power- law relat ion 

Y 1 p' (19) 

(20) 

where Bp and p are  constant numbers.  

For  the turbulent v i scos i ty  as  a function of y we have 

pBp 

with 7/= y / 5 .  
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Assuming, in accordance  with (5) that u ~ ~(y /5 )  for  small  values of u (inasmuch as only a small  pa r t  
of the boundary l aye r  d i rec t ly  adjacent  to the wall sur face  plays an impor tant  role in the heat t ransfer ) ,  
we have 7/= u / ~  and, let t ing 5 */~r = 6 *, we obtain 

- 

~T P P--P-~---p \ V  P v ) 

Fo r  the kinematic v i scos i ty  we assume a s imi la r  relation- 

~, =-~o ut-P. (22) 

Here,  according to (21), 

v- ~  ~t o _ v 6 '  l - p  

In the turbulent  mode the the rma l  conductivity is re la ted  to the dynamic viscos i ty  as  follows: 

With (21) we obtain now 

or ,  with (23), 

NO W, 

with 

Then 

~ :~* X'-p O%v /" ~ !  ul-p 

(23) 

(24) 

(25) 

~o = p r  v-o =pr~o. (26) 
v 

in t e r m s  of (26), formula  (17) becomes  
1 

T~ -- T a =- (r~ - -  Ta) Nu* ~ F (u) u p-1 du, (27) 
r J 

0 

N u * =  aS* (28) 

A t rans format ion  of the in tegra l  in (2), with Ty = T s at u = 0, yields 

1 
Nu* = poo Pr ~('P---~Jo (29) 

To __ Ta T, -- T a p [ _ 2 _ _ " 1  =_ .(1--up) t - - ( 1 - - u o + l )  + _ _  (1--up§ (30) 
J0(P) [ p + 2  J p + i  

(the t empera tu re  prof i le  in Fig. 1 has  been plot ted according to Eq. (30) in (Ty--Ta) / (Ts--Ta) ,  y / 5 *  co-  
ordinates) .  

Now the veloci ty  component Wx will be e x p r e s s e d  in t e r m s  of var iable  u and the other  p a r a m e t e r s .  

According to the definition of shear  f r ic t ion 

~ = ~  Oy " (31) 

but f r om (23) we have 

o r  with the aid of (5) 

~T = P vmul-' (32) 

(~ 

wx = ~:*:p~ j u p-11 (u) du + C 

*P. L. Kapitsa [4] has suggested the poss ib i l i ty  that the quantity Wyl '  i nc r ea se s  continuously f rom the 
r igid wall surface on. 

(33) 
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Fig. 1. Tempera tu re  and veloci ty  
p rof i l es  plotted according to fo rmu-  
las (30) and (34) respect ively:  (Ty 
--Ta)/(Ts--Ta) = f (y/5*)  (solid 
l ines),  Wx/W 0 (dashed line) with 
p = 1/7 (1,4), p = 1/3 (2, 3). 

Fo r  W x = 0 at  u = 0 there  follows C = 0. 

As before ,  we t r an s fo rm  the in tegra l  in (33) 

~'~:=IVo u---~--P ( l - -u) (1- -  P ) p p+2a~u , (34) 

with W 0 = 5*r0/Pvw (the veloci ty  prof i le  in Fig. 1 has been plotted according to Eq. (34) in Wx/W 0, y / 5 *  
coordinates) .  

Inser t ing now express ion  (34) for  Wx into (14) and using express ion  (3), we obtain 
1 

d p 

0 

When Ts- -T  a = cons t . ,  then $ / T s - - T  a = Nu or  f r o m  (35) and (34) 

] d Pr 1 J3(P) (36) 
i u =  d--~- v 2 top do(p) ' 

However,  

f ~  8* Re* (37) 

and 
1 cop = - : -  (Re*)1-p. (38) 

Then formula  (36) becomes  

Nu = d-d-d~ [ (Re*)I+P Pr Bp J0~]'J3 (P) ] 

We will fu r the r  seek a re la t ion between Re* and Gr* .  Rear ranging  Eq. 
fo r  Ty - - T  a and relat ion (34) for  W x, we obtain 

\ pvcop / 

Inser t ing Re* f rom (37) and (38) into (40), with Gr*  = gflzXTsS*3/p 2 and 5" /1  = 5 s, yields 

Re* '=Gr  *JI(p) 6, d [ B~ Re.:(l+p)j~(p)]. 
Jo(p) "~- t 8.~ J (41) 

We will now confine our  analysis  to the approximate  solution, d is regarding the second t e r m  in Eq. 
(14), and let  

(39) 

(15) for  To, with re la t ion (30) 
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or* = Gr 6~, (42) 

which then y ie lds  

Re*' = or  JI(P) 8~. 
Jo (P) 

(43) 

We now t ry  to r e l a t e  the Nusse l t  num be r  and the Grashof  number .  

Nu* = _ _ t  Re,(l-p) Pr, 
BpJo (P) 

but, since 
r ~I8. = Nutt~ Nu* . . . . . .  

According to (29) and (38), 

(44) 

(45) 

and, accord ing  to (43), 
2 I I 

Vo( ) 1 8.=Re* Or L ~ J  ' (46) 

hence 

! 

1 Re *O-p) Pr = Pr ~J1 (P) 1 T 1 i-3p 
Nu = BpJo (P) 6s BpJo (P------~ [Jo--~ ~ i Gr 3 Re* 3 (47) 

On the other hand, for the Nusselt number we have Eq. (39) and will use it for expressing Re* in terms of 
the Grashof  num ber  and the o the r  p a r a m e t e r s .  Finally,  

Re, O_p)~l = d 
6" d~ 

or ,  cons ider ing  (46), the d i f ferent ia l  equation 

d [Re, O+p) ] = 
d~ 

(39) and (47) yie ld  

4 (P)] 

1 
- g  1 I - -3p  

Bg 4 (P) L J0 (p) J 

In tegra t ing  (49) yie lds  (with Re * (l+p) = z and inasmuch  as  Re * --" 0 and C = 0 when ~ --* 0) 

S-[-Sp 1 l , 

Re,-~-  _ 2-}-6p I [J~(p) IT Or--~ = A p o r - ~  
3(lq-p) B~Js(p) L4 (p) J 

(4s) 

(49) 

(50) 

o r  

where 

3 I $ 

~+sp ~ (51) Re* = Ap Or ~ , 

1 

r.,,(p) Ap = 3(l-q-p)B~Js(p) L J - ~ J  (52) 

Inser t ing  Re*  f r o m  (51) into (47) y ie lds  

where  

l..-~-p I ,--3.0 

Nu -- ~,p Pr Gr m+ap) ~2"-~"~ , (53) 

l 

i V ' ( " ) P  ,4 .  
B / 0  (p) tJ-~-~ j " (54) 

An ana lys i s  of fo rmula  (53) leads  to the following conclusions:  

i .  If  the heat  t r a n s f e r  coeff icient  i s  to be independent of the l inear  dimension,  then the power  expo-  
nent of ~ mus t  be equated to ze ro ,  i . e . ,  I - - 3 p / 2  + 6p = 0 and thus p = 1,/3, but then (53) becomes  

l 

Nu = Ap Pr C_w ~'. (55) 

Obviously,  this fo rmula  c o r r e s p o n d s  to the law of " se l f - ad jo in tness"  with r e s p e c t  to the dimension.  In 
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other  words ,  developed t h e r m a l  turbulence p r e v a i l s  when p = 1/3 (while fo rced  turbulence is ,  according  to 
Karman,  c h a r a c t e r i z e d  by p = 1/7). 

2. In o r d e r  to sa t i s fy  the l imit ing re la t ion  Nu = f(Gri/2),  one mus t  let  1 + p/2(1 + 3p) = 1 /2 ,  i . e . ,  
p = 0 and, consequently,  the power  exponent of ~ b e c o m e s  equal  to 1/2. The Nusse l t  numbe r  then becomes  
p ropor t iona l  to the square  root  of the l inear  dimension,  which is  in a g r e e m e n t  with the g is t  of the F rank  
- -Kamene t sk i i  c o r o l l a r y  [31, i . e . ,  

l 1 

Nu = ffp Pr Gr 2 ~ 2 (56) 

3. It  i s  in te res t ing  that, with p = 1, fo rmula  (53) r educes  to the l amina r  fou r th - roo t  law: 
1 1 

Nu = A~ Pr Gr -~ ~---4 , (57) 

where the negat ive exponent  of ~ r e p r e s e n t s  the well  known dec rease  in the heat  t r a n s f e r  coeff icient  with 
inc reas ing  distance f r o m  the or igin of convect ive flow. 

A fu r the r  ana lys i s  of fo rmula  (53) makes  i t  feas ib le  to cons ider  the case  of P r  = I only, to include 
the P rand t l  number  in the coeff icient  Ap, with the l a t t e r  r ega rded  as a function of the Prand t l  number  
Ap = f (Pr) ,  and to calcula te  the va lues  of this coeff icient  accord ing  to the fo rmula  

! t l - - 3 p  

a, = i [s ,(al  + i l 1 (58) 
B,Jo(P) LJo(P) J [3ii"+-p) B~Jj(p) [ J o - ~ J  J 

F o r  p = 1/3, 1/7, and 1/10 we have r e spec t i ve ly  
1 p = - ~ - ;  J~-----1.674; J o =  1.392; Js =0:131; a s =  -10.2; 

1 p = - ~ - ;  J a =  1.658; J o =  1.190; J~=O 106; a~=--18.1; 

1 t 
p = - ~ - ;  J~ = 1.524; Jo=  1.138; J~ = 0.065; a s=- -24 .2 .  

Fo r  e l iminat ing  a 2 we have used the fo rmula  

as=_{l+ P~[I+Jo(P) ll 2-t-p 
p + l  J t - ~ J  J ~- ' (59) 

Since for  an approx imate  de te rmina t ion  of T 0 we have used Eq. (41) without the second t e rm ,  hence 
f r o m  (7) we obtain 

a 1 = 1 + Jo (P) 
j~ (p) (60) 

Inse r t ing  into (58) the found values  of Jl(P), J0(P), and J3(P) yieIds  

7 2 0  

I =0.765Bp-1; A ~ =1.452Bp 5; ~ I ~- 1.95Bp la (61) 
p ~ -  p = - -  p =  

3 7 

With Bp = 8.74, to the f i r s t  approximat ion  accord ing  to Karman,  we obtain 

i =0.0876~"0.1; A i =0.697; A 1 = 0.696. (62) 
P = ~  P=V P=-~ 

The f i r s t  approximat ion  Ap=l/~,,. ~0.10_ obtained on the bas i s  of the coeff icient  Bp for  fo rced  convection is  
suff icient ly close to the t es t  value of Ap=l/3 = 0.13 based  on na tura l  convection. This makes  it  feas ib le  now, 
in turn,  to de te rmine  Bp on the bas i s  of the t es t  value for  Bp accord ing  to the cube - roo t  law: Bp = 0.765 
/0.13 = 5.88. 

It  i s  to be noted that these values  indicate a close s t ruc tu ra l  s i m i l a r i t y  between na tura l  and forced  
turbulent  flow. 

N O T A T I O N  

x, y is  the longitudinal and no rm a l  coordinate  r e spec t ive ly ;  
~-y is  the tangential  component  of turbulent  f r ic t ion  in a l aye r  at a dis tance y f r o m  the plate  sur face ;  
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T 
% 
Ts 
Ty 
P 
ep 

_u t xt 
Ot 

Wx, Wy 

i s  the 
is  the 
is  the 
is  the 
is  the 
Is  the 
~s the 
is  the 

is  the turbulent  t h e r m a l  flux p e r  unit a r e a  p e r  trait t ime,  no rma l  to the sur face ,  f r o m  a 
l aye r  at  a dis tance y f r o m  the plate  sur face ;  

i s  the ins tantaneous  t e m p e r a t u r e  of the fluid; 
t e m p e r a t u r e  of the fluid at  infinity (far f r o m  the plate);  
t e m p e r a t u r e  of the pla te ;  
t e m p e r a t u r e  of a l aye r  a t  a dis tance y f r o m  the plate  su r face ;  
densi ty  of the fluid; 
specif ic  heat  of the fluid; 
t h e r m a l  expans iv i ty  of the fluid; 
turbulent  (average) dynamic v iscos i ty ;  
turbulent  (average) t h e r m a l  conductivity;  

IS the coeff ic ient  of heat  t r a n s f e r  during na tura l  convection; 
a re  the longitudinal and no rma l  component  of turbulent  (average) veloci ty;  

f (u) = ao + a~u + a2u2; F (u) = ~o + blu + b~u~; 

p ( 1 -  up+l )+ ___P~ p (I - -  UP+2) ] ; So (p) = 1 -'l- P ~  ~(u) = (1 - -uP)+  p - - ~  p-{-2 p + l  
1 

-~ p_{_2 ; Jl (p)= (1--u0) + ~ 1  (1 __uP+l)+ n-~-~ (1 _up+S) ; 
0 

1 1 

o 0 
1 

du ]*) 
Jl(P) ~ ,f [(l - -  uP) + p (1--uP+l)+ p ~ 2  (1--up+2)-~-~uj 

0 
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*The re la t ion  between this function and the F(p)-function makes  it  poss ib le  to use tab les  for  calculat ions).  
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